
Verification and Strategy Synthesis for Coalition
Announcement Logic

Natasha Alechina∗ Hans van Ditmarsch† Rustam Galimullin‡

Tuo Wang§

Abstract

Coalition announcement logic (CAL) is one of the family of the logics of quan-
tified announcements. It allows us to reason about what a coalition of agents can
achieve by making announcements in the setting where the anti-coalition may have
an announcement of their own to preclude the former from reaching its epistemic
goals. In this paper, we describe a PSPACE-complete model checking algorithm for
CAL that produces winning strategies for coalitions. The algorithm is implemented
in a proof-of-concept model checker.

1 Introduction

In the multi-agent logic of knowledge we investigate what agents know about their factual
environment and what they know about knowledge of each other [27]. (Truthful) Public
announcement logic (PAL) is an extension of the multi-agent logic of knowledge with
modalities for public announcements. Such modalities model the event of incorporating
trusted information that is similarly observed by all agents [32]. The ‘truthful’ part relates
to the trusted aspect of the information: we assume that the novel information is true.

In [2] the authors propose two generalisations of public announcement logic, GAL
(group announcement logic) and CAL (coalition announcement logic). These logics allow
for quantification over public announcements made by agents modelled in the system. In
particular, the GAL quantifier 〈G〉ϕ (parametrised by a subset G of the set of all agents
A) says ‘there is a truthful announcement made by the agents in G, after which ϕ (holds)’.
Here, the truthful aspect means that the agents in G only announce what they know: if
a in G announces ϕa, this is interpreted as a public announcement Kaϕa, and a truthful
group announcement by agents in G is a conjunction of such known announcements. The
CAL quantifier 〈[G]〉ϕ is motivated by game logic [31, 30] and Van Benthem’s playability

∗Utrecht University, Utrecht, The Netherlands; n.a.alechina@uu.nl
†Open University of the Netherlands, Heerlen, The Netherlands; hans.vanditmarsch@ou.nl
‡University of Bergen, Bergen, Norway; rustam.galimullin@uib.no
§University of Edinburgh, Edinburgh, UK; toy.haagend.wang@gmail.com

1

operator [9]. Here, the modality means ‘there is a truthful announcement made by the
agents in G such that no matter what the agents not in G simultaneously announce, ϕ
holds afterwards’. In [2] it is, for example, shown that CAL subsumes game logic.

CAL has been far less investigated than other logics of quantified announcements, such
as APAL [6] and GAL, although some combined results have been achieved [4, 19, 15]. In
particular, model checking for CAL, which has potential practical implications, has not
been studied. For example, in CAL it is possible to express that a group of agents (for
instance, a subset of bidders in an auction) can make an announcement such that no matter
what other agents announce simultaneously, after this announcement certain knowledge is
increased (all agents know that G has won the bid) but certain ignorance also remains (for
example, the maximal amount of money G could have offered). The main contribution of
this paper is a thorough analysis of the model checking problem for CAL and a description
of an implemented open source model checker for CAL and GAL formulas.

This paper is a revised and extended version of [21], with detailed proofs and a new
section on the implementation of the model-checking algorithm, which also contains a large
worked example. The structure of the paper is as follows. Section 2 provides the necessary
background on GAL and CAL, and in Section 3 we use distinguishing formulas to make
a shift from an infinite number of agents’ announcements to a finite number of strategies
available to them. The model checking algorithm is given in Section 4. The algorithm
presented here differs from the one presented in [21] in several respects. Instead of iterating
over an explicit list of strategies, it generates and tests strategies one at a time, so that
it only uses polynomial space. Instead of returning true and false, the version presented
here returns a set of states satisfying the formula; for true formulas starting with a GAL or
CAL modality, it also outputs a strategy. The model checking algorithm and the proof of
PSPACE-completeness build on those for GAL [1], but the algorithm for CAL requires some
modifications; in particular the algorithms in [1] runs in APTIME by ‘guessing’ strategies
while our algorithm is deterministic. We also describe an efficient (PTIME) special case.
The algorithm is implemented in a proof of concept model checker MCCAL available on
https://github.com/Twelvelines/MCCAL. The implementation and its performance are
described in detail in [33], and briefly in Section 5 of this paper.

2 Background

2.1 Introductory Example

Two agents, a and b, want to buy the same item, and whoever offers the greatest sum, gets
it. Agents may have 5, 10, or 15 pounds, and they do not know which sum the opponent
has. Let agent a have 15 pounds, and agent b have 5 pounds. This situation is presented
in Figure 1.

In this model (let us call it M), state names denote money distribution. Thus, 10a5b
means that agent a has 10 pounds, and agent b has 5 pounds. Labelled edges connect
the states that a corresponding agent cannot distinguish. For example, in the actual state

2

5a5b 5a10b 5a15b

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a
b b b

a a
b b b

Figure 1: Initial model M15a5b

(boxed), agent a knows that she has 15 pounds, but she does not know how much money
agent b has. Formally, M15a5b |= Ka15a ∧ ¬(Ka5b ∨Ka10b ∨Ka15b) (which means M15a5b

satisfies the formula, where Kiϕ stands for ‘agent i knows that ϕ’, ∧ is logical ‘and’, ¬ is
‘not’, and ∨ is ‘or’). Note that edges represent equivalence relations, and in the figure we
omit transitive and reflexive transitions.

Next, suppose that agents bid in order to buy the item. Once one of the agents, let us
say a, announces her bid, she also wants the other agent to remain ignorant of the total
sum at her disposal. Formally, we can express this goal as formula ϕ := Kb(10a ∨ 15a) ∧
¬(Kb10a ∨ Kb15a) (for bid 10 by agent a). Informally, if a commits to pay 10 pounds,
agent b knows that a has 10 or more pounds, but b does not know the exact amount. If
agent b does not participate in announcing (bidding), a can achieve the target formula
ϕ by announcing Ka10a ∨ Ka15a. In other words, agent a commits to pay 10 pounds,
which denotes that she has at least that sum at her disposal. In general, this means that
there is an announcement by a such that after this announcements ϕ holds. Formally,
M15a5b |= 〈a〉ϕ. The updated model MKa10a∨Ka15a

15a5b
, which is a restriction of the original

model to the states where Ka10a ∨Ka15a holds, is presented in Figure 2.

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a
b b b

Figure 2: Updated model MKa10a∨Ka15a
15a5b

Indeed, in the updated model agent b knows that a has at least 10 pounds, but not
the exact sum. The same holds if agent b announces her bid simultaneously with a in the
initial situation. Moreover, a can achieve ϕ no matter what agent b announces, e.g. Kb5b,
Kb(5b ∨ 10b), or Kb(5b ∨ 10b ∨ 15b), since all their announcements made in the conjunction
with a’s announcement Ka10a∨Ka15a result in the updated models satisfying ϕ. Formally,
M15a5b |= 〈[a]〉ϕ.

3

2.2 Syntax and Semantics of CAL

Let A denote a finite set of agents, and P denote a countable set of propositional variables.

Definition 1. The language of coalition announcement logic LCAL is defined by the fol-
lowing BNF:

ϕ, ψ ::= p | ¬ϕ | (ϕ ∧ ψ) | Kaϕ | [ψ]ϕ | [〈G〉]ϕ,

where p ∈ P , a ∈ A, G ⊆ A, and all the usual abbreviations of propositional logic
and conventions for deleting parentheses hold. The dual operators are defined as follows:
K̂aϕ := ¬Ka¬ϕ, 〈ψ〉ϕ := ¬[ψ]¬ϕ, and 〈[G]〉ϕ := ¬[〈G〉]¬ϕ. The language of group an-
nouncement logic LGAL is obtained by replacing [〈G〉]ϕ with [G]ϕ (the dual is written as
〈G〉ϕ). Language LPAL is the language without the operator [〈G〉]ϕ, and LEL is the pure
epistemic language without the operators [ψ]ϕ and [〈G〉]ϕ.

Formulas of CAL are interpreted in epistemic models.

Definition 2. An epistemic model is a triple M = (W,∼, V), where W is a non-empty
set of states, ∼: A → P(W × W) assigns an equivalence relation to each agent, and
V : P → P(W) assigns a set of states to each propositional variable. If necessary, we refer
to the elements of the model as WM , ∼M , and V M .

Epistemic model M is called finite if W is finite. A pair Mw with w ∈ W is called a
pointed model. Also, we write M ⊆ N if WM ⊆ WN , and ∼M and V M are restrictions of
∼N and V N to WM , and then call M a submodel of N .

Definition 3. For a model M = (W,∼, V) and X ⊆ W , an updated model MX
w is the

tuple (WX ,∼X , V X), where X ⊆ W , w ∈ X, WX = X, ∼Xa = ∼a ∩ (X ×X) for all a ∈ A,
and V X(p) = V (p) ∩X.

Let LGEL denote the set of formulas of the form
∧
i∈GKiϕi, where for every i ∈ G it

holds that ϕi ∈ LEL.

Definition 4. Let Mw be a pointed epistemic model. The semantics is inductively defined
as follows:

Mw |= p iff w ∈ V M(p)
Mw |= ¬ϕ iff Mw 6|= ϕ
Mw |= ϕ ∧ ψ iff Mw |= ϕ and Mw |= ψ
Mw |= Kaϕ iff ∀v ∈ W : w ∼Ma v implies Mv |= ϕ
Mw |= [ϕ]ψ iff Mw |= ϕ implies MX

w |= ψ, where X = {v ∈ W |Mv |= ϕ}
Mw |= [〈G〉]ϕ iff ∀ψ∈LGEL ∃χ∈L

A\G
EL : Mw |= ψ → 〈ψ ∧ χ〉ϕ

For clarity, we will write Mϕ
w = (Wϕ,∼ϕ, V ϕ) for MX

w = (WX ,∼X , V X) whenever
X = {v ∈ W | Mv |= ϕ}. Also note that, in order to avoid circularity, quantification in
the condition for coalition announcements is restricted to formulas of epistemic logic

Since in the model checking procedure we will also be considering GAL modalities, we
provide a truth definition for [G]ϕ:

4

Mw |= [G]ϕ iff ∀ψ∈LGEL : Mw |= [ψ]ϕ

Formula [G]ϕ is read as ‘whatever agents from G announce, ϕ holds.’ The operator for
coalition announcements [〈G〉]ϕ is read as ‘whatever agents from G announce, there is a
simultaneous announcement by agents from A \G such that ϕ holds.’

The semantics for the ‘diamond’ versions of group/strategic announcement operators
is as follows:

Mw |= 〈G〉ϕ iff ∃ψ∈LGEL : Mw |= 〈ψ〉ϕ
Mw |= 〈[G]〉ϕ iff ∃ψ∈LGEL ∀χ∈L

A\G
EL : Mw |= ψ ∧ [ψ ∧ χ]ϕ

They are read as ‘there is a combined simultaneous announcements by agents from G,
such that ϕ holds,’ and ‘there is an announcement by agents from G, such that whatever
agents from A \G announce at the same time, ϕ holds’ correspondingly.

Definition 5. We call formula ϕ a validity if and only if for any pointed model Mw it
holds that Mw |= ϕ. Given Mw and ϕ, we say that ϕ is satisfied in Mw if and only if
Mw |= ϕ.

2.3 Bisimulation

The notion of bisimulation [11, Chapter 2] plays a significant role in the paper.

Definition 6. Let M = (WM ,∼M , V M) and N = (WN , ∼N , V N) be two models. A
non-empty binary relation Z ⊆ WM ×WN is called a bisimulation if and only if for all
w ∈ WM and t ∈ WN with (w, t) ∈ Z:

Atoms for all p ∈ P , w ∈ V M(p) if and only if t ∈ V N(p);

Forth for all a ∈ A and all v ∈ WM : if w ∼Ma v, then there is a u ∈ WN such that
t ∼Na u and (v, u) ∈ Z;

Back for all a ∈ A and all u ∈ WN : if t ∼Na u, then there is a v ∈ WM such that
w ∼Ma v and (v, u) ∈ Z.

If there is a bisimulation between models M and N linking states w and t, we say that Mw

and Nt are bisimilar, and write Mw � Nt.

Next, we show an extension of the well-known result that bisimulation between states
implies that these states satisfy the same formulas.

Proposition 1. Let M = (WM ,∼M , V M) and N = (WN ,∼N , V N) be epistemic models
such that Mw � Nv for some w ∈ WM and v ∈ WN . Then for all ϕ ∈ LGAL ∪ LCAL,
Mw |= ϕ if and only if Nv |= ϕ.

5

Proof. The proof is by induction on the structure of ϕ. Note that it is straightforward to
define a size relation between formulas in such a way that the quantifier depth of formulas
is considered before the modal depth and subformula relation.

The boolean cases are immediate, and the proof for the case of public announcements
can be found, for example, in [14]. Here we prove only the case for coalition announcements,
since the case for group announcements is similar (and simpler).

Induction hypothesis. For all ϕ, ψ ∈ LGAL ∪ LCAL such that size(ϕ) < size(ψ), and all
w′ ∈ WM , v′ ∈ WN : Mw′ |= ϕ if and only if Nv′ |= ϕ.

Case 〈[G]〉ϕ. ⇒: Let Mw |= 〈[G]〉ϕ. By the definition of semantics, this is equivalent

to ∃ψ∈LGEL ∀χ∈L
A\G
EL : Mw |= ψ ∧ [ψ ∧ χ]ϕ. Because the quantifier depth of 〈[G]〉ϕ is

greater than the quantifier depth of ψ or [ψ ∧χ]ϕ, we have that size(ψ) < size(〈[G]〉ϕ) and
size([ψ ∧ χ]ϕ) < size(〈[G]〉ϕ). By the induction hypothesis, we have that for all formulas

ψ ∈ LGEL, Mw |= ψ if and only if Nv |= ψ, and for all ψ ∈ LGEL and χ ∈ LA\GEL , Mw |= [ψ∧χ]ϕ

if and only if Nv |= [ψ ∧ χ]ϕ. Hence, ∃ψ∈LGEL ∀χ∈L
A\G
EL : Nv |= ψ ∧ [ψ ∧ χ]ϕ which is

equivalent to Nv |= 〈[G]〉ϕ by the semantics.

The bisimulation contraction of a model is, informally, the most compact representation
of that model.

Definition 7. Let M = (W,∼, V) be a model. The bisimulation contraction of M is the
model ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖), where ‖W‖ = {[w] | w ∈ W} and [w] = {v ∈ W | Mw �
Mv}, [w]‖∼‖a[v] if and only if ∃w′ ∈ [w], ∃v′ ∈ [v] such that w′ ∼a v′, and [w] ∈ ‖V ‖(p) if
and only if w ∈ V (p). We call a model M bisimulation contracted if M is isomorphic to
‖M‖.

It is a standard result that Mw � ‖M‖[w] (see, for example, [23]).

Corollary 1. For all ϕ ∈ LGAL ∪ LCAL, ‖M‖[w] |= ϕ if and only if Mw |= ϕ.

3 Strategies of Groups of Agents on Finite Models

3.1 Distinguishing Formulas

In this section we introduce distinguishing formulas that are satisfied in only one (up to
bisimulation) state in a finite model. The discussion is based on [13]. Although agents know
and can possibly announce an infinite number of formulas, using distinguishing formulas
allows us to consider only finitely many different announcements. This is done by associ-
ating strategies of agents with corresponding distinguishing formulas, where a strategy of
agent a is a union of a-equivalence classes.

Without loss of generality, we assume that the set of propositional variables P is finite.
This is justified by the fact that in a finite epistemic model M = (W,∼, V) there are
2|W | unique truth assignments for a propositional variable, and a truth assignment for any
p2|W |+1 will repeat one from p1, . . . , p2|W | .

We continue with the formal definition of distinguishing formulas.

6

Definition 8. Let a finite epistemic model M = (W,∼, V) be given. Formula δS,S′ is called
distinguishing for S, S ′ ⊆ W if S ⊆ W δS,S′ and S ′ ∩W δS,S′ = ∅. If a formula distinguishes
state w from all other non-bisimilar states in M , we abuse the notation and write δw.

Proposition 2 ([7],[13]). Let M = (W,∼, V) be a finite epistemic model. Every state w
in M has a distinguishing formula δw ∈ LEL.

Proof. The construction and proof are found in [13, Lemma 8.1], that in its turn copies
the argument found in [7, Section 3.1]. Instead of technical detail we sketch the argument.

Let Mw be a finite pointed epistemic model. Without loss of generality we assume that
M is bisimulation contracted. A distinguishing formula δw is constructed recursively as
follows, where k ∈ N:

δ0
w :=

∧
w∈V (p) p ∧

∧
w 6∈V (p) ¬p

δk+1
w := δ0

w ∧
∧
a∈A(

∧
w∼av

K̂aδ
k
v ∧Ka

∨
w∼av

δkv)

δw := δ
|W |2
w

Conjuncts δ0
w,
∧
w∼av

K̂aδ
k
v , andKa

∨
w∼av

δkv respectively emulate conditions Atoms, Forth,
and Back of the definition of bisimulation. Indeed, it is then easy to see that the binary
relation Z on W defined by:

For all w, v ∈ W , (w, v) ∈ Z iff for all k ∈ N, Mw |= δkv ,

is a bisimulation on finite models. Therefore, for each w ∈ W that is not bisimilar to v
there is a max ∈ N such that Mw 6|= δmax

v . One can take max = |W |2, as also observed in
[7, Section 5].

Assumptions regarding some given model being finite and bisimulation contracted are
of vital importance for the construction of distinguishing formulas. If the model is infinite,
then we may either need an infinite amount of propositional variables to describe the
given state, or there may be infinite branches of accessibility relations. If the model is not
bisimulation contracted, i.e. there are bisimilar states in the model, then distinguishing
formulas cease to be unique — the same formula describes all bisimilar states in the model.
This becomes a problem if we want to switch from agents announcing formulas to agents
‘choosing’ a definable submodel: in the latter case agents may distinguish between bisimilar
states.

Having defined distinguishing formulas for states, we can define distinguishing formulas
for sets of states.

Definition 9. Let Mw be a finite model and S be a set of states in M . A distinguishing
formula for S is

δS :=
∨
w∈S

δw.

7

Let us recall the bidding example from Section 2.1, and construct the distinguishing
formula δ15a5b . Note that for this particular example it is enough to construct distinguishing
formulas of depth 0 only. This is due to the fact that each state in the example has a unique
valuation of propositional variables. We, however, proceed with the full construction for
illustrative purposes.

First, we start with the propositional description of the state:

δ0
15a5b

:= 15a ∧ 5b ∧ ¬10a ∧ ¬5a ∧ ¬10b ∧ ¬15b.

Let us assume that we calculated δ0’s in the same fashion for all other states. Next, we
proceed with the first iteration of δ15a5b :

δ1
15a5b

:= δ0
15a5b

∧
∧

K̂aδ
0
15a5b

∧ K̂aδ
0
15a10b

∧ K̂aδ
0
15a15b

∧Ka

∨ δ0
15a5b

δ0
15a10b

δ0
15a15b

K̂bδ

0
15a5b

∧ K̂bδ
0
10a5b

∧ K̂bδ
0
5a5b
∧Kb

∨ δ0
15a5b

δ0
10a5b

δ0
5a5b

 .

The process continues for |W |2 iterations. Informally, each iteration of a distinguishing
formula construction adds one layer for each state in a model. Hence, in our example with
9 states distinguishing formula δ15a5b looks as follows (assuming that all previous δk15a5b

’s
with k ≤ |W |2 − 1 have been calculated):

δk+1
15a5b

:= δ0
15a5b

∧
∧

K̂aδ
k
15a5b

∧ K̂aδ
k
15a10b

∧ K̂aδ
k
15a15b

∧Ka

∨ δk15a5b

δk15a10b

δk15a15b

K̂bδ

k
15a5b

∧ K̂bδ
k
10a5b

∧ K̂bδ
k
5a5b
∧Kb

∨ δk15a5b

δk10a5b

δk5a5b

 .

Note that since models we are dealing with in this paper are finite, distinguishing
formulas always exist.

3.2 Strategies

In this section we introduce strategies and connect them to public announcements using
distinguishing formulas. In the setting of GAL, strategies are sets of states that agents can
ensure to be in the updated model by announcing a formula that holds in those states. For
CAL, however, this is not always true, as the anti-coalition may have a counter-strategy
to reduce the set initially chosen by the coalition. Still, we use word ‘strategy’ in both
contexts. The formal definition of a strategy is presented below.

Definition 10. A strategy for an agent a in a finite model Mw is a union of equivalence
classes of a containing the a-equivalence class of w. Let S(a, w) be the set of all strategies

8

for agent a in Mw. A strategy for group G is defined as
⋂
i∈GXi such that for all i ∈ G,

Xi ∈ S(i, w). The set of available strategies for a group of agents G in Mw is denoted by
S(G,w).

Strategies are implemented by agents, and generally public announcements do not
correspond to strategies. Consider model M15a5b in Figure 1 and formula ϕ := (15a ∧ 5b)∨
(15a∧10b)∨(10a∧5b). It is easy to see that public announcement of ϕ does not correspond
to any strategy of a and b, that is Wϕ 6∈ S({a, b}, 15a5b).

Note that for any Mw and G ⊆ A, S(G,w) is not empty, since the trivial strategy that
includes all the states of the current model is available to all agents. We denote the trivial
strategy by X>.

Proposition 3. In a finite model Mw, for any G ⊆ A, S(G,w) is finite.

Proof. This is due to the fact that in a finite model there is a finite number of equivalence
classes for each agent.

Thus, in Figure 1 there are three a-equivalence classes: {15a5b, 15a10b, 15a15b}, {10a5b,
10a10b, 10a15b}, and {5a5b, 5a10b, 5a15b}. Let us designate them by the first element of a
corresponding set, printed in typewriter font, i.e. 15a5b, 10a5b, and 5a5b. The set of all
available strategies of agent a in M15a5b is {15a5b, 15a5b∪10a5b, 15a5b∪5a5b, 15a5b∪10a5b∪
5a5b}. Similarly, the set of all available strategies of agent b in M15a5b is {15a5b, 15a5b ∪
15a10b, 15a5b ∪ 15a15b, 15a5b ∪ 15a10b ∪ 15a15b}. Finally, all possible intersections of
a’s and b’s strategies from the set of all available strategies of group {a, b}. For exam-
ple, there is a group strategy for agents a and b that contains only two states – 15a5b
and 10a5b. This strategy is an intersection of a’s 15a5b ∪ 10a5b and b’s 15a5b, that is
{15a5b, 15a10b, 15a15b, 10a5b, 10a10b, 10a15b}∩ {15a5b, 10a5b, 5a5b}.

Now we tie together announcements and strategies. Each of infinitely many possible
announcements by agents in a finite model corresponds to a set of states where it is true
(a strategy). In a finite bisimulation contracted model, each strategy is definable by a dis-
tinguishing formula, hence it corresponds to an announcement. This allows us to consider
finitely many strategies instead of considering infinitely many possible announcements:
there are only finitely many non-equivalent (in terms of model updates) announcements
for each finite model, and each of them has a corresponding distinguishing formula of some
strategy.

Given a finite and bisimulation contracted model Mw and strategy X ∈ S(G,w), a
distinguishing formula δX for X can be obtained from Definition 9 as

∨
v∈X δv.

Next, we show that agents know their strategies and thus can make corresponding
announcements.

Proposition 4. Let Mw be a finite bisimulation contracted model, and X ∈ S(a, w).
Then Mw |= KaδX . Also, let XG :=

⋂
i∈GXi, where for all i ∈ G, Xi ∈ S(i, w), be a group

strategy, then Mw |=
∧
i∈GKiδXi

.

9

Proof. We show just the first part of the proposition, since the second part follows easily.
By the definition of a strategy, X = [w1]a ∪ . . . ∪ [wn]a, where [w1]a, . . . , [wn]a belong to
the set of a-equivalence classes. Since Mw is bisimulation contracted, for every equivalence
class [wi]a there is a corresponding distinguishing formula δ[wi]a . From the fact that for all
v ∈ [wi]a, Mv |= δ[wi]a (by Proposition 2 and Definition 9), we have that Mv |= Kaδ[wi]a .
The same holds for other equivalence classes of a including the one with w, and we have
Mw |= (Kaδ[w1]a ∨ . . . ∨Kaδ[wn]a), which implies Mw |= Ka(δ[w1]a ∨ . . . ∨ δ[wn]a). Note that
δ[w1]a ∨ . . . ∨ δ[wn]a is a distinguishing formula of strategy X, so we can write Mw |= KaδX .
Finally, having defined KjδXj

for all j ∈ G, such that Xj ∈ S(j, w), the group strategy
XG =

⋂
j∈GXj in Mw corresponds to Mw |=

∧
j∈GKjδXj

.

The following proposition states that given a strategy, the corresponding public an-
nouncement yields exactly the model with states specified by the strategy.

Proposition 5. Given a finite bisimulation contracted model M = (W,∼, V) and a strat-
egy X ∈ S(a, w), WKaδX = X. More generally, W

∧
i∈GKiδXi = XG, where XG :=

⋂
i∈GXi

such that for all i ∈ G, Xi ∈ S(i, w).

Proof. In order to prove that WKaδX = X for X ∈ S(a, w), we need to show that for all
v ∈ W , v ∈ WKaδX if and only if v ∈ X.
⇒: Let for some arbitrary v ∈ W , v ∈ WKaδX . By the definition of WKaδX , this means

that Mv |= KaδX . Expanding δX , we get Mv |= Ka

∨
u∈X δu. Since ∼a is an equivalence

relation, the latter implies that Mv |=
∨
u∈X δu. Due to the fact that M is bisimulation

contracted, Mv |=
∨
u∈X δu if and only if δv is one of δu’s, i.e. Mv |= δv and v ∈ X.

⇐: Let for some arbitrary v ∈ W , v ∈ X. Since X is a strategy, by Proposition 4
we have that Mw |= Ka

∨
u∈X δu. Due to the fact that M is bisimulation contracted and

v ∈ X, v also satisfies Ka

∨
u∈X δu. Hence, v ∈ WKa

∨
u∈X δu , or, equivalently, v ∈ WKaδX .

Finally, let us consider the case of group G. It is clear that W
∧

i∈GKiδXi =
⋂
i∈GW

KiδXi ,
where for all i ∈ G, Xi ∈ S(i, w). Each WKiδXi is equal to Xi for all i ∈ G. Hence,⋂
i∈GW

KiδXi =
⋂
i∈GXi. The latter is equivalent to XG by the definition of a group

strategy.

We also show that true group announcements correspond to group strategies.

Proposition 6. Let Mw be a finite bisimulation contracted epistemic model, and ψ ∈ LGEL
such that Mw |= ψ. Then there is a strategy X ∈ S(G,w) such that X = Wψ.

Proof. Assume thatMw |= ψ. Formula ψ is an abbreviation for
∧
i∈GKiψi, where ψi ∈ LEL.

Let us consider some particular Kaψa. By the semantics we have that Mw |= Kaψa holds
if and only if for all v reachable from w via a, Mv |= ψa. Note that all states reachable
from the given one via a form an a-equivalence class [w]a. In the same way, Kaψa may
be true in other a-equivalence classes [u]a, . . . [t]a. Hence, formula Kaψa holds in the union
of these equivalence classes, i.e. it holds in WKaψa = [w]a ∪ . . . ∪ [t]a. By Definition 10,
[w]a ∪ . . . ∪ [t]a is a strategy X of agent a in Mw.

10

Now assume that we have defined strategies Xi in Mw of all i ∈ G in this fashion. From
the fact that W

∧
i∈GKiψi =

⋂
i∈GW

Kiψi we have that W
∧

i∈GKiψi =
⋂
i∈GW

Kiψi =
⋂
i∈GXi,

and the latter is a group strategy X ∈ S(G,w).

Now, let us reformulate semantics for the group and coalition announcement operators
in terms of strategies.

Proposition 7. For a finite bisimulation contracted model Mw we have that

Mw |= 〈G〉ϕ iff ∃X ∈ S(G,w) : MX
w |= ϕ,

Mw |= 〈[G]〉ϕ iff ∃X ∈ S(G,w) ∀Y ∈ S(A \G,w) : MX∩Y
w |= ϕ.

Proof. Case 〈G〉ϕ. ⇒: Assume that for some pointed model we have that Mw |= 〈G〉ϕ.
By the semantics this means that ∃ψ ∈ LGEL : Mw |= 〈ψ〉ϕ. The latter is equivalent to
Mw |= ψ and Mψ

w |= ϕ. By Definition 3 and Proposition 6, this implies MX
w |= ϕ for some

X ∈ S(G,w).
⇐: Let X ∈ S(G,w) be a group strategy such that MX

w |= ϕ. Then, by Propositions
4 and 5, there is an announcement of distinguishing formulas by agents from G such

that X = W
∧

i∈GKiδXi , where Xi ∈ S(i, w) for all i ∈ G. Hence M
∧

i∈GKiδXi
w |= ϕ and

Mw |=
∧
i∈GKiδXi

. The latter is equivalent to Mw |= 〈G〉ϕ by the semantics.
Case 〈[G]〉ϕ. ⇒: Suppose that for some Mw it holds that Mw |= 〈[G]〉ϕ. By the definition

of semantics this is equivalent to ∃ψ ∈ LGEL,∀χ ∈ L
A\G
EL : Mw |= ψ ∧ [ψ ∧ χ]ϕ.

Let LA\GMw
= {χ ∈ LA\GEL | Mw |= χ} be the set of truthful announcements by A \ G in

Mw. Since LA\GMw
⊂ LA\GEL , we have that ∃ψ ∈ LGEL,∀χ ∈ L

A\G
EL : Mw |= ψ ∧ [ψ ∧ χ]ϕ implies

∃ψ ∈ LGEL,∀χ ∈ L
A\G
Mw

: Mw |= ψ ∧ χ and Mψ∧χ
w |= ϕ. Hence, by Proposition 6, we have

MX∩Y
w |= ϕ for some X ∈ S(G,w) and all Y ∈ S(A \G,w).
⇐: Assume that there is some strategy X ∈ S(G,w) such that for all strategies Y ∈

S(A \G,w) it holds that MX∩Y
w |= ϕ. We need to show that

∃ψ ∈ LGEL, ∀χ ∈ L
A\G
EL : Mw |= ψ ∧ [ψ ∧ χ]ϕ.

Let ψ =
∧
i∈GKiδXi

(assuming X =
⋂
i∈GXi). By Proposition 4, Mw |= ψ, and by

Proposition 5, Wψ = X. Take an arbitrary χ ∈ LA\GEL . If Mw 6|= χ, then trivially Mw |=
ψ∧ [ψ∧χ]ϕ holds. If Mw |= χ, then by Proposition 6, for some Y ∈ S(A\G,w), Y = W χ.
Since for all Y ∈ S(A\G,w), MX∩Y

w |= ϕ, we have that Mψ∧χ
w |= ϕ, hence Mw |= ψ∧[ψ∧χ]ϕ

holds for all χ ∈ LA\GEL . The latter is equivalent to Mw |= 〈[G]〉ϕ by the semantics.

Sometimes we may be interested in situations where it is beneficial for agents to be as
informative as possible (or, equivalently, leave as little uncertainty as possible). We recall
the Maxim of Quantity postulated by Grice [24, 25]:

Make your contribution as informative as is required.

However, he also adds

11

Do not make your contribution more informative than is required.

What is as informative as required depends on the goal of the communication. So, in
terms of epistemic logic, it depends on the epistemic goal to be satisfied in the model
restriction resulting from the announcement, or from the sequence of announcements (as
in a conversation consisting of various statements by different people, exactly the CAL
setting). If the epistemic goal is full information on the value of all propositional variables,
then the most informative announcement is the adequate announcement. However, there
are other settings wherein the most informative announcement is not adequate. Typical
settings of that kind are security protocols wherein the communicating principals want
to be as informative as required (namely satisfying the information goal) but not more
than that. They should guarantee safety: the eavesdropper should not be able to learn
the information. The most informative announcement may then backfire. For example,
a Bridge player had better not declare that she has the Queen of Hearts. This is very
informative for her partner, but equally informative for the opposing team.

The type of announcements that fulfill the requirement that they are as informative as
possible is defined in Definition 11.

Definition 11. Let Mw be a finite bisimulation contracted model. A maximally informa-
tive announcement by G is a formula ψ ∈ LGEL such that w ∈ Wψ and for all χ ∈ LGEL such
that w ∈ W χ it holds that Wψ ⊆ W χ. For finite models such an announcement always
exists [3]. We will call the corresponding strategy X ∈ S(G,w) the strongest strategy on a
given model.

Intuitively, the strongest strategy is the smallest available strategy. Note that in a
bisimulation contracted model Mw, the strongest strategy of agents G is X =

⋂
i∈G[w]i,

that is agents’ strategies consist of the single equivalence classes that include the current
state.

In model M15a5b in Figure 1 a’s strongest strategy is {15a5b, 15a10b, 15a15b}, and b’s
strongest strategy is {15a5b, 10a5b, 5a5b}. So, the strongest strategy of group {a, b} is
the intersection of strongest strategies of agents from the group: {15a5b, 15a10b15a15b}∩
{15a5b, 10a5b, 5a5b} = {15a5b}. Corresponding announcements are, respectively, Ka(δ15a5b∨
δ15a10b ∨ δ15a15b), Kb(δ15a5b ∨ δ10a5b ∨ δ5a5b), and Ka(δ15a5b ∨ δ15a10b ∨ δ15a15b) ∧ Kb(δ15a5b ∨
δ10a5b ∨ δ5a5b).

4 Model Checking for CAL

Employing strategies allows for a rather simple model checking algorithm for CAL. We
switch from quantification over an infinite number of epistemic formulas to quantification
over a finite set of strategies (Section 4.1). Moreover, we show that if the target formula
is a positive PAL formula, then model checking is even more effective (Section 4.2).

12

4.1 General Case

First, let us define the model checking problem.

Definition 12. Let Mw be a finite epistemic model, and ϕ ∈ LCAL ∪ LGAL. The model
checking problem is the problem to determine whether ϕ is satisfied in Mw.

We are going to solve this problem by providing an algorithm mc that, given a finite
epistemic model M = (W,∼, V) and some formula ϕ, computes Wϕ. Then the answer to
the model checking problem for Mw will be yes if w ∈ Wϕ, and no otherwise.

As a side effect, for formulas of the form 〈G〉ψ or 〈[G]〉ψ and for each state in Wϕ, mc
also writes out a strategy of G (a set of states) that ensures ψ. We could have defined mc
to return a pair consisting of Wϕ and a strategy (or an empty set, for formulas that are
not of form 〈G〉ϕ or 〈[G]〉ϕ) but we have decided to output the strategy as a side effect for
ease of presentation.

Algorithm 1 takes a finite modelM and ϕ0 ∈ LCAL∪LGAL as an input, and returnsWϕ0 ,
while also writing out a list of ‘witness’ strategies for group and coalition announcement
operators. The case for GAL modalities is treated similarly to the model checking algorithm
introduced in [1], apart from also printing out the witness strategy. The case for CAL
modalities requires checking each strategy against all possible strategies by the opponents.
Unlike the algorithm in [1] which runs in APTIME, we state a deterministic PSPACE
algorithm.

But before providing the algorithm, we first need to introduce a function next(G,M,w,X),
that given a group of agents G, a model M , a state w and a strategy X, returns the next
strategy X ′ in S(G,w).

We assume that in the input M = (W,∼, V), ∼a for each a is given as a set of
equivalence classes of states, and that for each agent a there are na such classes (clearly
na ≤ |W |; observe also that this way of specifying the equivalence relation is linear rather
than quadratic in |W |). Each strategy in S({a}, w) should include the equivalence class
[w]a. There are 2na−1 subsets of the set of the remaining ∼a-equivalence classes, and hence
|S({a}, w)| = 2na−1.

The set S(G,w) can be ordered using the order on the set of agents A and on the
equivalence classes of each agent a in G. For example, if an agent a has equivalence classes
e1, . . . , em in M , and e1 contains w,1 then the order on S({a}, w) by shortest first and then
lexicographically on S({a}, w) is:

e1 = [w]a

e1 ∪ e2

e1 ∪ e3

. . .

1Clearly, w could belong to an equivalence class other than e1, e.g. to e3, but the point remains that
the remaining unions of equivalence classes can be ordered in the same way.

13

e1 ∪ em

e1 ∪ e2 ∪ e3

e1 ∪ e2 ∪ e4

. . .

e1 ∪ e2 . . . ∪ em = W

Note that the first and the last strategies of a can be computed in time and space at most
linear in the size of the model. Given an arbitrary element X in this order, the next one in
the order (the function next({a},M,w,X)) can be computed in time and space polynomial
in the size of the model. For a union of length j, we first check whether the last element
can be ‘incremented’ (whether it is not e1 or em) and if yes, increment it. If it cannot be
incremented, then we check if the element j−1 can be incremented (if it is not e1 or em−1).
If it can be incremented to the next equivalence class e′, we increment j − 1 and change j
to e′′ where e′′ follows e′ in the order of equivalence classes. If it cannot be incremented,
we repeat until we either produce the next union of length j or we produce the first union
of length j + 1 which is e1 ∪ e2 ∪ . . . ∪ ej+1.

Similarly, given the order on agents inG, say a1, . . . , ak, each agent’s strategies, si1, . . . , s
i
Ni

,
where Ni = 2ni−1, the set S(G,w) can be ordered lexicographically (below, Ni = 2ni−1,
and siNi

= W is the last strategy of agent i):

s1
1 ∩ . . . ∩ sk1 =

⋂
i∈G[w]i

s1
1 ∩ . . . ∩ sk−1

1 ∩ sk2

. . .

s1
N1
∩ . . . ∩ skNk

= W

Again, the first and the last strategies of G can be computed in time at most linear in
the size of the model, and the next element in time and space polynomial in the size of
the model. Similarly to the single agent case, if the kth agent’s strategy X is not W , we
increment it by calling next({ak},M,w,X), else we attempt to increment the strategy of
ak−1 and reset the strategy of ak to its first strategy [w]ak , etc.

For a group G of k agents, each with 2nai−1 strategies, we have that |S(G,w)| =
2Σknai−1 ≤ 2|W |−1. Hence the size of S(G,w) is bounded by the exponential in the size of
the model (although not in |G|). A straightforward model-checking algorithm would gen-
erate S(G,w) (and S(A\G,w) for coalition announcements) and iterate over it to check if
the group or coalition announcement formula is satisfied. However generating S(G,w) ex-
plicitly requires exponential amount of space. Instead of use the function next(G ,M ,w ,X)
to generate the strategy that follows X in the ordering of S(G,w). Generating and testing

14

strategies one at a time only requires polynomial amount of space. For technical conve-
nience, we also define

next(G,M,w, ∅) =
⋂
i∈G

si1

(the first strategy in S(G,w) follows ∅) and

next(G,M,w,
⋂
i∈G

siNi
) = ∅

(calling next on the last strategy returns ∅). Note that ∅ 6∈ S(G,w).

Algorithm 1 mc(M,ϕ0)

1: function mc(M,ϕ0)
2: case ϕ0 = p
3: return V (p)

4: case ϕ0 = ¬ϕ
5: return (W \mc(M,ϕ))

6: case ϕ0 = ϕ ∧ ψ
7: return mc(M,ϕ) ∩mc(M,ψ)

8: case ϕ0 = Kaϕ
9: return {w | [w]a ⊆ mc(M,ϕ)}

10: case ϕ0 = [ψ]ϕ
11: return (W \mc(M,ψ)) ∪mc(Mψ, ϕ)

12: case ϕ0 = 〈G〉ϕ
13: compute the bisimulation contraction ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖)
14: ρ← ∅
15: for w ∈ W do
16: X ← ∅
17: found ← false
18: while next(G, ‖M‖, [w], X) 6= ∅ ∧ found = false do
19: X ← next(G, ‖M‖, [w], X)
20: if [w] ∈ mc(‖M‖X , ϕ) then
21: found ← true
22: ρ← ρ ∪ {w}
23: print(〈G〉ϕ, ‖M‖, [w], X)

24: return ρ

25: case ϕ0 = 〈[G]〉ϕ
26: compute the bisimulation contraction ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖)
27: ρ← ∅
28: for w ∈ W do
29: X ← ∅
30: found ← false

15

31: while next(G, ‖M‖, [w], X) 6= ∅ ∧ found = false do
32: X ← next(G, ‖M‖, [w], X)
33: check ← true
34: Y ← ∅
35: while next(A \G, ‖M‖, [w], Y) 6= ∅ do
36: Y ← next(A \G, ‖M‖, [w], Y)
37: check ← check ∧ ([w] ∈ mc(‖M‖X∩Y , ϕ))

38: if check then
39: ρ← ρ ∪ {w}
40: print(〈[G]〉ϕ, ‖M‖, [w], X)
41: found ← true

42: return ρ

Now we show the correctness of the algorithm.

Proposition 8. Let Mw be a finite epistemic model, and ϕ ∈ LCAL ∪ LGAL. Then
w ∈ mc(M,ϕ) if and only if Mw |= ϕ.

Proof. The proof is by induction on the complexity of ϕ. Boolean cases are straightforward
and we omit them. In the proofs for cases 〈G〉ϕ and 〈[G]〉ϕ, we use Proposition 7.

Case [ψ]ϕ. Let w ∈ mc(M, [ψ]ϕ). This is equivalent to w ∈ (W\mc(M,ψ))∪mc(Mψ, ϕ)
by line 11 of the algorithm. The latter is equivalent to Mw |= ¬ψ or Mψ

w |= ϕ by the
induction hypothesis. This is equivalent to Mw |= [ψ]ϕ by the semantics.

Case 〈G〉ϕ. ⇒: Suppose w ∈ mc(M, 〈G〉ϕ). By lines 18-22 this means that for some
strategy X ∈ S(G, [w]), [w] ∈ mc(‖M‖X , ϕ). By the induction hypothesis, ‖M‖X[w] |= ϕ,

and ‖M‖[w] |= 〈G〉ϕ by the semantics. The latter implies Mw |= 〈G〉ϕ.
⇐: Let Mw |= 〈G〉ϕ, which is equivalent to ‖M‖[w] |= 〈G〉ϕ, and means that there

is some strategy X ∈ S(G, [w]), such that ‖M‖X[w] |= ϕ. By the induction hypothesis,

the latter holds if and only if [w] ∈ mc(‖M‖X , ϕ). By lines 18-22, we have that w ∈
mc(M, 〈G〉ϕ).

Case 〈[G]〉ϕ. ⇒: Suppose w ∈ mc(M, 〈[G]〉ϕ). By lines 32-39, this means that there
exists strategy X ∈ S(G, [w]) such that for all strategies Y ∈ S(A \ G, [w]), [w] ∈
mc(‖M‖X∩Y , ϕ). By the induction hypothesis, ∃X ∈ S(G, [w]), ∀Y ∈ S(A \ G, [w]) :
‖M‖X∩Y[w] |= ϕ, which is ‖M‖[w] |= 〈[G]〉ϕ by Proposition 7. The latter is equivalent to

Mw |= 〈[G]〉ϕ by Corollary 1.
⇐: Let Mw |= 〈[G]〉ϕ, which is equivalent to ‖M‖[w] |= 〈[G]〉ϕ by Corollary 1. According

to Proposition 7, this in turn is equivalent to ∃X ∈ S(G, [w]), ∀Y ∈ S(A \ G, [w]) :
‖M‖X∩Y[w] |= ϕ. By the induction hypothesis, the latter holds if and only if there is X ∈
S(G, [w]) such that for all Y ∈ S(A \ G, [w]), [w] ∈ mc(‖M‖X∩Y , ϕ). By lines 32-39, we
have that w ∈ mc(M, 〈[G]〉ϕ).

Proposition 9. Model checking for CAL is PSPACE-complete.

16

Proof. All the cases of the model checking algorithm apart from the case for 〈[G]〉 (and
〈G〉 for GAL) require polynomial time, both in the size of the model and the size of the
formula (hence, polynomial space as a consequence).

The cases for 〈G〉 and 〈[G]〉 generate and test exponentially many strategies. The run-
ning time of the algorithm is therefore exponential in the size of the model (but polynomial
in the size of the formula).

However the cases for 〈G〉 and 〈[G]〉 use only polynomial amount of space. Observe that
next(G,M,w,X) can be implemented to generate and return the successor strategy of X
in time and space polynomial in M and G. Each check of a particular strategy can be
computed using only polynomial amount of space to represent ‖M‖[w] (which contains at
most the same number of states as the input model M , and can be computed in polynomial
time (see Appendix A)) and the result of the update (which at most the size of ‖M‖[w])
and make a recursive call to check whether ϕ holds in the update.

Hardness can be obtained by a slight modification of the proof of PSPACE-hardness of
the model-checking problem for GAL in [1]. The proof encodes satisfiability of a quantified
boolean formula (QBF) as a problem whether a particular GAL formula is true in a model
corresponding to the QBF. We highlight just some parts of the proof from [1]. Given some
QBF Ψ := Q1x1 . . . QnxnΦ(x1, . . . , xn), the authors construct a model that depends on the
number of variables in the formula. We have depicted the model in Figure 3, wherein those
variables possibly indexed with 0 or 1 have become the names of the states.

x0
1 x0

2 x0
n

xp−1 p−2 . . . p−n

x1
1 x1

2 x1
n

p+
1 p+

2
. . . p+

n

i i i i

i i i

i i i i
i

Figure 3: Model M that corresponds to a QBF.

Apart from agent i, whose relation is universal, there is also agent g, whose relation is
the identity. Next, the authors define properties qj ‘only one of x0

j and x1
j is in the model’

and rj ‘both x0
j and x1

j are in the model’. These properties are used to recursively define
a GAL formula ψ(Ψ) that will be then evaluated in model Mx |= ψ(Ψ). An example of a
corresponding GAL formula for the given QBF ∀x1∃x2∀x3 : Φ(x1, x2, x3) is Ki[g](q1 ∧ r2 ∧
r3 → K̂i〈g〉(q1 ∧ q2 ∧ r3 ∧Ki[g](q1 ∧ q2 ∧ q3 → Φ(K̂ip

+
1 , K̂ip

+
2 , K̂ip

+
3)))).

For our proof, however, it is enough to notice the following. Since the encoding uses
only two agents: an omniscient g and a universal i, we can replace [g] and 〈g〉 with [〈g〉]
and 〈[g]〉 (since i’s only strategy is equivalent to > and no other GAL operators are used
in the encoding) and obtain a CAL encoding.

17

4.2 Positive Case

In this section we demonstrate the following result: if in a given formula the subformulas
within the scope of coalition and group announcement operators are positive PAL formulas,
then complexity of model checking is polynomial.

Allowing coalition announcement modalities to bind only positive formulas is a natural
restriction. Positive formulas have a special property: if the sum of knowledge of agents
in G (their distributed knowledge) includes a positive formula ϕ, then ϕ can be made
common knowledge by a group or coalition announcement by G. Formally, for a positive
ϕ, Mw |= DGϕ implies Mw |= 〈[G]〉CGϕ, where DG stands for distributed knowledge which
is interpreted by the intersection of all ∼a relations, and CG stands for common knowledge
which is interpreted by the transitive closure of the union of all ∼a relations. See [17], and
also [5] where the process of making distributed knowledge common knowledge is called
resolving distributed knowledge. In other words, positive epistemic formulas can always
be resolved by cooperative communication.

Negative formulas do not have this property. For example, it can be distributed knowl-
edge of agents a and b that p and ¬Kbp: D{a,b}(p ∧ ¬Kbp). However it is impossible to
achieve common knowledge of this formula: C{a,b}(p∧¬Kbp) is inconsistent, since it implies
both Kbp and ¬Kbp. Going back to the example in Section 2.1, it is distributed knowledge
of a and b that Ka15a and Kb5b. Both formulas are positive and can be made common
knowledge if a and b honestly report the amount of money they have. However it is also
distributed knowledge that ¬Ka5b and ¬Kb15a. The conjunction

Ka15a ∧Kb5b ∧ ¬Ka5b ∧ ¬Kb15a

is distributed knowledge, but it cannot be made common knowledge for the same reasons
as above.

We should also observe that positive formulas are maybe not as rare as it may appear
on first sight. In the first place, in models where all states have different valuations, every
announcement is equivalent to the disjunction of the characteristic formulas of depth 0 in
the states in the denotation of the announcement. In particular, this is the case for the
model in Figure 1.

However, in the second place, there are still other cases where announcement formulas
are equivalent to positive formulas on some given model. This is not well-explored territory.
A very relevant result by Van Benthem is that on finite models any epistemic formula ψ is
equivalent to a formula ϕ that remains true after being announced. Such formulas ϕ are
now often known as successful formulas [8, 17] (the term employed in [8] is persistent).

The formula constructed in Van Benthem’s proof is a disjunction of characteristic for-
mulas of states in the original and in the restricted models. This successful formula contains
diamonds K̂i and may not be positive (another problematic issue is that it also contains
common knowledge modalities). The standard example of a successful formula that is
not positive is the formula ¬Kap. However, this and similar constructions may well lead
to expand the use of the positive fragment. It is further relevant to observe that such
positive formulas are a good candidate to characterise what are known as the preserved

18

formulas (those that remain true after any update, see Definition 13 below), which is also
shown in [8], but for the slightly smaller positive fragment excluding the clause [¬ψ]ϕ for
announcements given below.

The positive formulas are also relevant in an entirely different way for logics with quan-
tification over announcements, namely in the logic called APAL+ wherein the quantification
is over positive formulas only (in contrast to the situation investigated in this section, as
the CAL quantifier is over all known formulas, which need not be positive, whereas the for-
mula bound by the CAL quantifier must be positive). This logic is investigated in [16]. It
is incomparable in expressivity to APAL, and it is also reputed to be decidable. No version
of CAL quantifying over known positive formulas has been investigated to our knowledge.

Definition 13. The language LPAL+ of the positive fragment of public announcement logic
PAL is defined by the following BNF:

ϕ, ψ ::= p | ¬p | (ϕ ∧ ψ) | (ϕ ∨ ψ) | Kaϕ | [¬ψ]ϕ,

where p ∈ P and a ∈ A.

Definition 14. Formula ϕ is preserved under submodels if for any models M and N ,
N ⊆M and Mw |= ϕ implies Nw |= ϕ.

A known result that we use in this section states that formulas of LPAL+ are preserved
under submodels [17].

Proposition 10. Let Mw be a finite epistemic model, and let ϕ ∈ LCAL ∪ LGAL be a
formula such that for all its subformulas of form 〈[G]〉ψ and 〈G〉ψ, ψ belongs to the positive
fragment LPAL+ . It is possible to decide by means of a deterministic algorithm working in
polynomial time whether Mw |= ϕ.

Proof. For positive formulas, we can replace Algorithm 1 by Algorithm 2.

Algorithm 2 Model checking for positive formulas

1: function mcp(M,ϕ0)
2: case ϕ0 = p,¬ϕ, ϕ ∧ ψ,Kaϕ, [ψ]ϕ
3: as Algorithm 1

13: case ϕ0 = 〈G〉ϕ
14: compute the bisimulation contraction ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖)
15: ρ← ∅
16: for w ∈ W do
17: X ← the strongest strategy of G in [w]
18: if [w] ∈ mcp(‖M‖X , ϕ) then
19: ρ← ρ ∪ {w}
20: print(〈G〉ϕ, ‖M‖, [w], X)

21: return ρ

22: case ϕ0 = 〈[G]〉ϕ

19

23: compute the bisimulation contraction ‖M‖ = (‖W‖, ‖∼‖, ‖V ‖)
24: ρ← ∅
25: for w ∈ W do
26: X ← the strongest strategy of G in [w]
27: if [w] ∈ mcp(‖M‖X , ϕ) then
28: ρ← ρ ∪ {w}
29: print(〈[G]〉ϕ, ‖M‖, [w], X)

30: return ρ

For all subformulas of ϕ0, the algorithm runs in polynomial time. Consider the modified
call for 〈G〉ϕ and 〈[G]〉ϕ. Instead of checking all possible strategies as in the general case,
it requires constructing a single update model given a single (strongest) strategy, which is
a simple case of restricting the input model to the set of states in the strategy. This can be
done in polynomial time. Then we call the algorithm on the updated model for ϕ, which
by assumption requires polynomial time.

Observe that the cases of CAL and GAL modalities for the positive fragment are treated
in an identical way: we check whether the strongest strategy of G can be used to make
the goal formula true. Intuitively, this is because every positive formula that can be made
true with any strategy, can be made true with the strongest strategy. And in the case of
CAL, the announcement by the opponents does not matter, since 〈[G]〉ϕ implies 〈G〉ϕ, and
any further restrictions of a model do not change the valuation of positive ϕ.

Now, let us show that Algorithm 2 is correct.

Proposition 11. Let Mw be a finite epistemic model, and ϕ ∈ LPAL+ . Then w ∈
mcp(M,ϕ) if and only if Mw |= ϕ.

Proof. The proof is by induction on the size of ϕ.
Case 〈G〉ϕ. ⇒: Suppose that w ∈ mcp(M, 〈G〉ϕ). This means that [w] ∈ mcp(‖M‖X , ϕ),

where X is the strongest strategy of G in [w]. By the induction hypothesis, we have that
‖M‖X[w] |= ϕ, hence by Proposition 7 ‖M‖[w] |= 〈G〉ϕ. Since ‖M‖[w] is bisimilar to Mw,

Mw |= 〈G〉ϕ.
⇐: Let Mw |= 〈G〉ϕ. By Corollary 1 this is equivalent to ‖M‖[w] |= 〈G〉ϕ, and

by Proposition 7 the latter is equivalent to ∃X ∈ S(G, [w]) : ‖M‖X[w] |= ϕ. Since ϕ is

positive and hence preserved under submodels, ∃X ∈ S(G, [w]) : ‖M‖X[w] |= ϕ implies

‖M‖Y[w] |= ϕ, where Y is the strongest strategy of G. By the induction hypothesis we

have that [w] ∈ mcp(‖M‖Y , ϕ). And by lines 17-19 of Algorithm 2, we conclude that
w ∈ mcp(M, 〈G〉ϕ).

Case 〈[G]〉ϕ. ⇒: Suppose that w ∈ mcp(M, 〈[G]〉ϕ). This means that [w] ∈ mcp(‖M‖X ,
ϕ), where X is the strongest strategy of G in [w]. By the induction hypothesis, we have that
‖M‖X[w] |= ϕ. Since ϕ is positive, for all stronger updates X ∩ Y , where Y ∈ S(A \G, [w]),

it holds that ‖M‖X∩Y[w] |= ϕ, which is ‖M‖[w] |= 〈[G]〉ϕ by Proposition 7. Finally, the latter

model is bisimilar to Mw and hence Mw |= 〈[G]〉ϕ.

20

⇐: Let Mw |= 〈[G]〉ϕ. By Corollary 1 this is equivalent to ‖M‖[w] |= 〈[G]〉ϕ, and by
Proposition 7 the latter is equivalent to ∃X ∈ S(G, [w]), ∀Y ∈ S(A\G, [w]): ‖M‖X∩Y[w] |= ϕ.

Note that the trivial strategy Y > ∈ S(A \ G, [w]). Hence, ∃X ∈ S(G, [w]), ∀Y ∈ S(A \
G, [w]): ‖M‖X∩Y[w] |= ϕ implies ∃X ∈ S(G, [w]): ‖M‖X∩Y >

[w] |= ϕ, which is equivalent to

‖M‖X[w] |= ϕ. Since ϕ is positive and hence preserved under submodels, ‖M‖Z[w] |= ϕ,

where Z is the strongest strategy of G in [w]. By the induction hypothesis, we have
that [w] ∈ mcp(‖M‖Z , ϕ). And by lines 26-28 of Algorithm 2, we conclude that w ∈
mcp(M, 〈[G]〉ϕ).

5 Implementation and Experimental Results

There are several model checking tools for epistemic logic and its extensions. MCMAS
[28] and MCK [22] can be used for verifying properties of epistemic temporal and strategy
logics. DEMO [18] can be used to verify PAL properties, and SMDEL [10] to symbolically
verify DEL properties. Recently DEMO has been used by Hagland [26] to check for the
existence of group strategies in the Russian Cards problem [12]. There are no general
purpose model checkers for GAL and CAL.

The model checker MCCAL is implemented in Java by Wang [33]. The code is available
on https://github.com/Twelvelines/MCCAL. The model checker implementation is not
optimised and is intended as a proof of concept. A non-trivial example from [20] is presented
in the next section.

5.1 Households and Burglars: An Example

In the city of N2 the local authorities have decided to gather information about, and publish
statistics on, electricity consumption in each neighbourhood. Consumption information is
submitted by each neighbourhood in the city, indicating the total number of households
that have been using electricity in the last month. Data about neighbourhoods is public,
and data about individual households is private, i.e., particular users of electricity are not
revealed, but the total number of such users in the area is common knowledge. And there
is a reason for such a requirement.

A group of local burglars is also interested in the public report on electricity consump-
tion: they hope to deduce which households have not used electricity recently since it is
an indication that property occupiers are not in their houses (most probably, they are on
vacation). However, the burglars want to be certain that a house is empty, and will not
risk burglary unless they know for sure that the property occupiers are away. They are
also very reluctant to lurk around a neighbourhood trying to learn who is away, as such
behaviour is very suspicious. Therefore, the only way to know about ‘vacant’ households
is through the public energy consumption report.

2The work on the model checking of CAL started when three authors were based in Nottingham, and
the fourth author was in Nancy. Moreover, city N is a well-known fictional location in Russian literature.

21

In N, there is a small neighbourhood of only four houses: a, b, c, and d. They are
situated around a park in a circular fashion such that neighbours on the left and on the
right are equidistant. The park is quite large and the occupants of each house knows only
their immediate neighbours on the left and on the right. Thus, for example, the occupant
of c knows the occupants of b and d, and about their plans, but she is unaware of the plans
of the occupants of a.

The epistemic model TES describing the neighbourhood containing a, b, c, and d is
shown in Figure 4. In the model, the names of states indicate who is at home; for instance,
1001 means that the occupants of a and d are at home, and that the occupants of b and c
are not. Burglars v (for ‘villains’) do not have any information regarding occupancy, and
their epistemic relation is universal. We do not present the v-relation in the figure, for
readability. We will refer to the occupant of house i as agent i.

1111 1011

1001 1101

d

d

a

1110 1010

1000 1100

d

d

a

b b

bb
0001 0101

0000 0100

d

b

d

b

0111 0011

0110 0010

a

a

d

d

bb

c

c

c

c

c

c

c

c

Figure 4: Model TES 0101

Let the actual state be 0101, and let 0101 also abbreviate ¬pa ∧ pb ∧ ¬pc ∧ pd, where
pi stands for ‘agent i is at home.’ Note that neither burglars nor the householders possess
the full information about the neighbourhood: TES 0101 |= ¬(Ka0101∨Kb0101∨Kc0101∨
Kd0101 ∨ Kv0101). Also note that householders are aware of their own state and of the
states of their left- and right-hand-side neighbours, but not about the state of the furthest
house. E.g. TES 0101 |= Kc¬pc ∧Kcpb ∧Kcpd ∧ ¬(Kc¬pa ∨Kcpa).

The information that agents a, b, c and d want to submit is ‘two households in our
neighbourhood have been using electricity.’ This sentence, however, should conform to the
requirement that exact households remain unknown to the public outside the neighbour-

22

hood. We can express this goal as the formula

sofa := Kv

∨

pa ∧ pb ∧ ¬pc ∧ ¬pd
pa ∧ ¬pb ∧ pc ∧ ¬pd
pa ∧ ¬pb ∧ ¬pc ∧ pd
¬pa ∧ pb ∧ pc ∧ ¬pd
¬pa ∧ pb ∧ ¬pc ∧ pd
¬pa ∧ ¬pb ∧ pc ∧ pd

 ∧ ¬
∨

Kvpa ∨Kv¬pa
Kvpb ∨Kv¬pb
Kvpc ∨Kv¬pc
Kvpd ∨Kv¬pd

 ,

where sofa stands for ‘the state of affairs.’ A group announcement by agents to achieve this
goal is when everyone announces ‘I know that if I have not been using electricity recently,
then at least one of my neighbours on the left and on the right has, and if I have been using
it, then one of the neighbours must be on vacation’. Formally, such an announcement can
be expressed by the following formula

mis :=
∧

Ka((¬pa → (pd ∨ pb)) ∧ (pa → ¬(pd ∧ pb)))
Kb((¬pb → (pa ∨ pc)) ∧ (pb → ¬(pa ∧ pc)))
Kc((¬pc → (pb ∨ pd)) ∧ (pc → ¬(pb ∧ pd)))
Kd((¬pd → (pc ∨ pa)) ∧ (pd → ¬(pc ∧ pa)))

 ,

where mis stands for ‘mutual informative statement.’
Thus we have that TES 0101 |= 〈mis〉sofa. Since mis is an announcement of agents’

knowledge, we can conclude that there is an announcement by a, b, c and d such that sofa
holds in the resulting model, i.e. TES 0101 |= 〈{a, b, c, d}〉sofa. Result of updating TES 0101

with mis is presented in Figure 5.

1001 1010

1100

01010011

0110

Figure 5: Model TESmis
0101

All the relations in the model are v equivalence relations. Hence, indeed, in TESmis
0101

exactly two households have been using electricity recently, and although the public (and
burglars as well) knows that fact, it cannot name particular houses that are ‘vacant’. A
‘side-effect’ of group announcement mis is that all residents in the neighbourhood know
exactly who is on vacation, and it is common knowledge.

23

Note that we can state a fact stronger than TES 0101 |= 〈{a, b, c, d}〉sofa. Since v’s
relation is universal, they cannot prevent the group to make sofa true whatever they (i.e.
v) announce. In other words, TES 0101 |= 〈[{a, b, c, d}]〉sofa.

Interestingly, in this particular example even two agents can make an announcement
such that sofa holds in the resulting model. Consider the following announcement by
agents a and b:

misa,b := Ka((pa → ¬pd) ∧ (¬pa → pd)) ∧Kb((pb → ¬pc) ∧ (¬pb → pc)).

The resulting updated model is shown in Figure 6 (all the relations are v-relations).

1010

1100

01010011

Figure 6: Model TES
misa,b
0101

The reader can verify that TES
misa,b
0101 |= sofa, and hence TES 0101 |= 〈{a, b}〉sofa. Note

that compared to model TESmis
0101 (Figure 5), model TES

misa,b
0101 has fewer states. This means

that householders gave a bit more information than necessary, but they still managed
to inform authorities that exactly two households have been using electricity while not
revealing the exact state of affairs.

Even though two householders can make a successful announcement, they must ensure
that none of the other agents has been conspiring with burglars. For assume this is the
case that agent c, for example, decides to reveal to burglars which houses are empty. She
can pass the following information with a’s and b’s submission: Kc(¬pc ∧ pb ∧ pd). This
announcement made in conjunction with misa,b results in a singleton model with 0101 as
the only state. Moreover, whatever a and b announce, c always has an announcement to
make sofa false in the resulting model (and, alas, to let the burglars know that she is on
vacation). Formally, we have that TES 0101 |= ¬〈[{a, b}]〉sofa, or, equivalently, TES 0101 |=
[〈{a, b}〉]¬sofa. Hence, in this particular example, property householders should always
cooperate if they want to inform authorities about electricity consumption and keep the
burglars away.

We have seen that an announcement by two householders is enough to make sofa true.
What about the single-agent case? As householders possess information about themselves
and two closest neighbours, they do not know the actual state of the world, i.e. they do
not have enough information about their furthest neighbour. However, it is possible for
some agents to make an announcement such that it informs the public that at least two

24

of the households have been using electricity recently, and particular users and non-users
remain incognito. Formally, such a target formula is as follows:

sofa1 := Kv

∨

pa ∧ pb ∧ ¬pc ∧ ¬pd
pa ∧ ¬pb ∧ pc ∧ ¬pd
pa ∧ ¬pb ∧ ¬pc ∧ pd
¬pa ∧ pb ∧ pc ∧ ¬pd
¬pa ∧ pb ∧ ¬pc ∧ pd
¬pa ∧ ¬pb ∧ pc ∧ pd
pa ∧ pb ∧ pc ∧ ¬pd
pa ∧ pb ∧ ¬pc ∧ pd
pa ∧ ¬pb ∧ pc ∧ pd
¬pa ∧ pb ∧ pc ∧ pd
pa ∧ pb ∧ pc ∧ pd

∧ ¬

∨
Kvpa ∨Kv¬pa
Kvpb ∨Kv¬pb
Kvpc ∨Kv¬pc
Kvpd ∨Kv¬pd

 .

Agent a, for instance, can make sofa1 true in TES 0101 by announcing

misa := Ka((¬pa → (pb ∧ pd)) ∧ (pa → (pb ∨ pd))).

The result of such an announcement is presented in Figure 7 (relation v is universal) .

1001 0111

1100

01011011

1110

1111 1101

a

d

a

c

a

b

d c

b

a

Figure 7: Model TESmisa
0101

It easy to verify that TESmisa
0101 |= sofa1. Hence, it also holds that TES 0101 |= 〈{a}〉sofa1,

and, obviously, TES 0101 |= ¬〈[{a}]〉sofa1.

5.2 Experiments

For trivial examples with two or three agents and two or three states, the running time of
MCCAL is less than the time needed to print the output to the screen.

25

To have more interesting examples, we have checked the following formulas on the
TES 0101 model:

1. [mis]sofa

2. 〈{a, b, c, d}〉sofa

3. 〈[{a, b, c, d}]〉sofa

4. 〈{a, b}〉sofa

5. ¬〈[{a, b}]〉sofa

6. 〈{a}〉sofa1

7. ¬〈[{a}]〉sofa1

The experiment was carried out on a quad-core 64-bit Processor running at 2.2 GHz
with 16GB of memory. The results of model checking these formulas and the average
runtime (including outputting lists of strategies) of 10 computations is presented in Ta-
ble 1. The times taken to check 〈{a, b, c, d}〉sofa and 〈[{a, b, c, d}]〉sofa are significantly
longer because the current implementation explicitly computes the set of all strategies for
{a, b, c, d}, and this set is larger than the set of {a, b} and {a} strategies. However, the set
of strategies does not grow exponentially with the size of the group.

Formula Runtime

[mis]sofa 4ms
〈{a, b, c, d}〉sofa 41s137ms
〈[{a, b, c, d}]〉sofa 37s883ms
〈{a, b}〉sofa 496ms
¬〈[{a, b}]〉sofa 3s475ms
〈{a}〉sofa1 211ms
¬〈[{a}]〉sofa1 1s907ms

Table 1: Formulas and average runtime of MCCAL

For formulas with the outermost occurrence of diamond versions of GAL and CAL
modalities (formulas 2, 3, 4, and 6), MCCAL returns the corresponding group and indi-
vidual strategies. The output of the model checker for state 0101 is presented in Table
2.

The reader can verify that strategies for formulas 〈{a, b, c, d}〉sofa and 〈[{a, b, c, d}]〉sofa
are identical. Indeed, the only agent outside of group {a, b, c, d} is v, whose relation
is universal. For formula 〈[{a}]〉sofa1, strategy of the group consisting of a single agent
coincides with the agent’s individual strategy. Strategies in the table differ from the ones
presented in Section 5.1. Our algorithm can be easily modified to return all successful
strategies.

26

Formula Group strategy
〈{a, b, c, d}〉sofa {0101, 1001, 1010}

a {1010, 1011, 1110, 1000, 1001, 0110, 1100, 0111, 0100, 0101}
b {1010, 1000, 1110, 1011, 1001, 1111, 0000, 0110, 1100, 0100, 0001, 0111, 1101, 0101}
c {1010, 1000, 0010, 1011, 1111, 1001, 0000, 1100, 0011, 1101, 0111, 0001, 0100, 0101}
d {1010, 1110, 1001, 0001, 1101, 0101}
〈[{a, b, c, d}]〉sofa {0101, 1001, 1010}

a {1010, 1011, 1110, 1000, 1001, 0110, 1100, 0111, 0100, 0101}
b {1010, 1000, 1110, 1011, 1001, 1111, 0000, 0110, 1100, 0100, 0001, 0111, 1101, 0101}
c {1010, 1000, 0010, 1011, 1111, 1001, 0000, 1100, 0011, 1101, 0111, 0001, 0100, 0101}
d {1010, 1110, 1001, 0001, 1101, 0101}

〈{a, b}〉sofa {0101, 1010}
a {1010, 0010, 1000, 0011, 0000, 0111, 0101}
b {1010, 1110, 1101, 1111, 0100, 0101}

〈{a}〉sofa1 {1011, 1110, 1001, 1100, 0111, 0101}
a {1011, 1110, 1001, 1100, 0111, 0101}

Table 2: Formulas and generated strategies

6 Concluding Remarks

We have shown that the model checking problem for CAL is PSPACE-complete, just like
the one for GAL [1] and APAL [6]. We also presented a model checker for both CAL and
GAL formulas. An interesting direction for future work is to optimise the performance of
MCCAL.

In the special case when formulas within scopes of coalition modalities are positive PAL
formulas, the model checking problem is in P. The same result would apply to GAL and
APAL; in fact, in those cases the formulas in the scope of group and arbitrary announce-
ment modalities can belong to a larger positive fragment (the positive fragment of GAL
and of APAL, respectively, rather than of PAL). The latter is due to the fact that GAL
and APAL operators are purely universal, while CAL operators combine universal and ex-
istential quantification, and CAL does not appear to have a non-trivial positive fragment
extending that of PAL.

An interesting special case we would like to consider in the future is the case of models
where each state has a different assignment of propositional variables such that the models
are already bisimulation contracted.

Acknowledgements

We thank anonymous IJCAI 2018 and KI 2018 referees for constructive comments, and
IJCAI 2018 referees for finding an error in the earlier version of this paper. We thank

27

Brian Logan for helpful discussions about model checking CAL, and Brian Logan and
Franco Raimondi for advice on the implementation of the model checker. We are also
grateful to the two anonymous reviewers for their suggestions and careful reading of the
manuscript. This work was carried out while Hans van Ditmarsch was affiliated to LORIA,
CNRS, University of Lorraine, France.

Appendix: Bisimulation Contraction Algorithm

To state the bisimulation contraction algorithm, we need the following operations:

• for two sets X and Y ,

split(X, Y) =

{
{X ∩ Y,X ∩ Y } if X ∩ Y 6= ∅, X ∩ Y 6= ∅
{X} otherwise

We will refer to Y as a splitter of X if split(X, Y) = {X ∩ Y,X ∩ Y }.

• If Q is a set of sets, and Y a set, then

split(Q, Y) =
⋃
X∈Q

split(X, Y)

We will refer to Y as a splitter of Q if for some X ∈ Q, split(X, Y) = {X∩Y,X∩Y }.

• If Y is a set of states, and ∼a an indistinguishability relation, ∼a(Y) = {x | ∃y ∈ Y
such that x ∼a y} (the preimage of Y with respect to ∼a). Clearly,

∼a(Y) =
⋃
y∈Y

[y]a.

The algorithm below is essentially the naive version of the relational coarsest partition
algorithm by [29]. It starts with all states placed in a single block of the partition, and
repeatedly splits the blocks until the states in the same block are bisimilar (that is, until
the blocks correspond to bisimulation equivalence classes).

The first loop of the algorithm makes sure that the states in the same block satisfy the
same propositional variables. In this loop, each set V (p) is used as a (potential) splitter.
This enforces the Atoms condition of the bisimulation relation.

The second loop enforces the property that the Paige-Tarjan relational coarsest par-
tition algorithm was designed to achieve: for every indistinguishability relation ∼a, and
every pair of blocks X, Y , either X ⊆ ∼a(Y), or X ∩∼a(Y) = ∅. This ensures that either
every element of X has an a-successor in Y , or none do (the Back and Forth conditions of

28

bisimulation relation).3 We repeatedly use splitters of the form ∼a(Y) until the partition
does not change.

The algorithm returns a partition of W into bisimulation equivalence classes, which
corresponds to ‖W‖.

Algorithm 3 Computing ‖W‖ given M = (W,∼, V)

1: function rcp(M)
2: Q = {W}
3: for p ∈ P do
4: Q← split(Q, V (p))

5: repeat
6: pick Y ∈ Q and a ∈ A such that ∼a(Y) is a splitter for Q
7: Q← split(Q,∼a(Y))
8: until there is no change to Q
9: return Q

The algorithm runs in time polynomial in |W |, |P | and |∼|.
The first loop in the algorithm iterates over |P | and in the worst case terminates when

every block in Q is a singleton set, that is, the size of Q at the end of the loop is at most
|W |, so at most |W | splits are performed. This means that the time complexity of the first
loop is O(|W | × |P |).

If sets [w]a are given as part of the model, then computing the splitters is O(|∼|), and
the number of times the splits are performed is O(|W |) again. So the time complexity of
the second loop is O(|W | × |∼|).

The total time complexity of the algorithm is O(|W | × (|P | + |∼|)). A more efficient
(logarithmic in |W |) version is possible as shown by [29], but here we state the simplest
polynomial algorithm which is implemented in the model-checking tool.

References

[1] Thomas Ågotnes, Philippe Balbiani, Hans van Ditmarsch, and Pablo Seban. Group
announcement logic. Journal of Applied Logic, 8(1):62–81, 2010.

[2] Thomas Ågotnes and Hans van Ditmarsch. Coalitions and announcements. In Lin
Padgham, David C. Parkes, Jörg P. Müller, and Simon Parsons, editors, Proceedings
of the 7th AAMAS, pages 673–680. IFAAMAS, 2008.

[3] Thomas Ågotnes and Hans van Ditmarsch. What will they say? - public announce-
ment games. Synthese, 179(Supplement-1):57–85, 2011.

3Paige and Tarjan worked with a single edge relation E rather than a set of relations ∼a. They used
notation E−1(Y) for the preimage of Y with respect to E, but for symmetric ∼, ∼a(Y) = ∼−1

a (Y), so we
can simplify the notation.

29

[4] Thomas Ågotnes, Hans van Ditmarsch, and Tim French. The undecidability of quan-
tified announcements. Studia Logica, 104(4):597–640, 2016.

[5] Thomas Ågotnes and Yı̀ N. Wáng. Resolving distributed knowledge. Artificial Intel-
ligence, 252:1–21, 2017.

[6] Philippe Balbiani, Alexandru Baltag, Hans van Ditmarsch, Andreas Herzig, Tomohiro
Hoshi, and Tiago de Lima. ‘Knowable’ as ‘known after an announcement’. Review of
Symbolic Logic, 1(3):305–334, 2008.

[7] Johan van Benthem. Dynamic odds and ends. Technical report, University of Ams-
terdam, 1998. ILLC Research Report ML-1998-08.

[8] Johan van Benthem. “One is a lonely number”: logic and communication. In Zoé
Chatzidakis, Peter Koepke, and Wolfram Pohlers, editors, Logic Colloquium ‘02, vol-
ume 27 of Lecture Notes in Logic, pages 96–129. Cambridge University Press, 2006.

[9] Johan van Benthem. Logic in Games. MIT Press, 2014.

[10] Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile Su. Symbolic model
checking for dynamic epistemic logic - S5 and beyond. Journal of Logic and Compu-
tation, 28(2):367–402, 2018.

[11] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2001.

[12] Hans van Ditmarsch. The russian cards problem. Studia Logica, 75(1):31–62, 2003.

[13] Hans van Ditmarsch, David Fernández-Duque, and Wiebe van der Hoek. On the
definability of simulation and bisimulation in epistemic logic. Journal of Logic and
Computation, 24(6):1209–1227, 2014.

[14] Hans van Ditmarsch and Tim French. Quantifying over boolean announcements.
CoRR, abs/1712.05310, 2020.

[15] Hans van Ditmarsch, Tim French, and Rustam Galimullin. No finite model property
for logics of quantified announcements. In Joseph Halpern and Andrés Perea, editors,
Proceedings of the 18th TARK. EPTCS, 2021. To appear.

[16] Hans van Ditmarsch, Tim French, and James Hales. Positive announcements. Studia
Logica, https://doi.org/10.1007/s11225-020-09922-1, 2020.

[17] Hans van Ditmarsch and Barteld Kooi. The secret of my success. Synthese, 153(2):339–
339, 2006.

30

[18] Jan van Eijck. DEMO – a demo of epistemic modelling. In Johan van Benthem,
Dov Gabbay, and Benedikt Löwe, editors, Interactive Logic. Proceedings of the 7th
Augustus de Morgan Workshop, volume 1 of Texts in Logic and Games, pages 305–
363. Amsterdam University Press, 2007.

[19] Tim French, Rustam Galimullin, Hans van Ditmarsch, and Natasha Alechina. Groups
versus coalitions: On the relative expressivity of GAL and CAL. In Edith Elkind,
Manuela Veloso, Noa Agmon, and Matthew E. Taylor, editors, Proceedings of the
18th AAMAS, pages 953–961. IFAAMAS, 2019.

[20] Rustam Galimullin. Coalition Announcements. PhD thesis, University of Nottingham,
2019.

[21] Rustam Galimullin, Natasha Alechina, and Hans van Ditmarsch. Model checking for
coalition announcement logic. In Frank Trollmann and Anni-Yasmin Turhan, editors,
KI 2018: Advances in Artificial Intelligence, volume 11117 of LNCS, pages 11–23.
Springer, 2018.

[22] Peter Gammie and Ron van der Meyden. MCK: model checking the logic of knowledge.
In Rajeev Alur and Doron A. Peled, editors, Proceedings of the 16th CAV, volume 3114
of LNCS, pages 479–483. Springer, 2004.

[23] Valentin Goranko and Martin Otto. Model theory of modal logic. In Patrick Black-
burn, Johan van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, vol-
ume 3 of Studies in Logic and Practical Reasoning, pages 249–329. Elsevier, 2007.

[24] Herbert Paul Grice. Logic and conversation. In Peter Cole and Jerry L. Morgan,
editors, Syntax and Semantics 3: Speech Arts, pages 41–58. Academic Press, 1975.

[25] Herbert Paul Grice. Studies in the Way of Words. Harvard University Press, 1989.

[26] Tor Hagland. Crossing hands in the russian cards problem, 2018. MSc Thesis, De-
partment of Information Science and Media Studies, University of Bergen.

[27] Jaakko Hintikka. Knowledge and belief. An introduction to the logic of the two notions.
Cornell University Press, Ithaca, NY, 1962.

[28] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: A model checker
for the verification of multi-agent systems. In Ahmed Bouajjani and Oded Maler,
editors, Proceedings of the 21st CAV, volume 5643 of LNCS, pages 682–688. Springer,
2009.

[29] Robert Paige and Robert Endre Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973–989, 1987.

31

[30] Rohit Parikh. The logic of games and its applications. In Marek Karplnski and Jan
van Leeuwen, editors, Topics in the Theory of Computation, volume 24 of Annals of
Discrete Mathematics, pages 111–139. Elsevier Science, Amsterdam, 1985.

[31] Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and
Computation, 12(1):149–166, 2002.

[32] Jan Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.

[33] Tuo Wang. Model checker for coalition announcement logic, 2019. BSc Thesis, School
of Computer Science, University of Nottingham.

32

